На главную

Условие задачи

На двух коаксиальных бесконечных цилиндрах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2 (см. рис.). Требуется: 1) используя теорему Остроградского-Гаусса, найти зависимость E(r) напряженности электрического поля от расстояния для трех областей: I, II, III. Принять σ1 = 3σ, σ2 = σ, 2) вычислить напряженность E в точке, удаленной от оси цилиндров на расстояние r, и указать направление вектора Е. Принять σ = 10 нКл/м2; r = 2R; 3) построить график E(r).


Решение:
substr(На двух коаксиальных бесконечных цилиндрах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями σ<sub>1</sub> и σ<sub>2</sub> (см. рис.). Требуется: 1) используя теорему Остроградского-Гаусса, найти зависимость E(r) напряженности электрического поля от расстояния для трех областей: I, II, III. Принять σ<sub>1</sub> = 3σ, σ<sub>2</sub> = σ, 2) вычислить напряженность E в точке, удаленной от оси цилиндров на расстояние r, и указать направление вектора Е. Принять σ = 10 нКл/м<sup>2</sup>; r = 2R; 3) построить график E(r).<br><img src = ,0,80)"/>

Цена: 45 руб.
оплатить
 Новый поиск

   
  Точное вхождение   Искать в найденном